Control of Underactuated Fluid-Body Systems with Real-Time Particle Image Velocimetry
نویسندگان
چکیده
Controlling the interaction of a robot with a fluid, particularly when the desired behavior is intimately related to the dynamics of the fluid, is a difficult and important problem. Highperformance aircraft cannot ignore nonlinear stall effects, and robots hoping to fly and swim with performance matching that seen in birds and fish cannot treat fluid flows as quasisteady. If we wish to match the level of performance seen in nature several major hurdles must be overcome, with one of the most difficult being the poor observability of the fluid state. Fluid dynamicists have long contended with this observability problem, and have used computationally intensive Particle Image Velocimetry (PIV) to gain an understanding of the fluid behavior after the fact. However, improvement in available computational power is now making it possible to perform PIV in real-time. When PIV provides real-time awareness of the fluid state it is no longer just an analysis tool, but rather a valuable sensor that can be integrated into the control loop. In this thesis I present methods for controlling fluid-body systems in which the fluid plays a vital dynamical role, for performing real-time PIV, and for interpreting the output of PIV in a manner useful to control. The utility of these methods is demonstrated on a mechanically simple but dynamically rich experimental platform: the hydrodynamic cartpole. This system is analogous to the well-known cart-pole system in the controls literature, but through its relationship with the surrounding fluid it captures many of the fundamental challenges of general fluid-body control tasks, including: nonlinearity, underactuation, an important and unknown fluid state and a dearth of accurate and tractable models. The first complete demonstration of closed-loop PIV control is performed on this system, and there is a statistically significant improvement in the system’s ability to reject fluid disturbances when using real-time PIV for closed-loop control. These results suggest that these new techniques will push the boundaries of what we can expect a robot in a fluid to do. Thesis Supervisor: Russ Tedrake Title: X Consortium Associate Professor
منابع مشابه
Fluid Dynamics Investigation of a GDI Fuel Spray by Particle Image Velocimetry
In this work, result of experimental investigation on interaction of fuel spray generated by a swirled type injector, with air motion in a prototype cylinder are presented. Experiments were carried out by planar imaging and particle image velocimetry (PIV) techniques in order to provide information about the spray structure evolution and instantaneous velocity distribution of air motion and ...
متن کاملTime-Invariant State Feedback Control Laws for a Special Form of Underactuated Nonlinear Systems Using Linear State Bisection
Linear state bisection is introduced as a new method to find time-invariant state feedback control laws for a special form of underactuated nonlinear systems. The specialty of the systems considered is that every unactuated state should be coupled with at least two directly actuated states. The basic idea is based on bisecting actuated states and using linear combinations with adjustable parame...
متن کاملComparisons of Experimental and Simulated Velocity Fields in Membrane Module Spacers
Spacers are used in spiral wound and plate and frame membrane modules to create flow channels between adjacent membrane layers and mix fluid within the flow channel. Flow through the spacer has a significant beneficial impact on mixing and resulting mass transfer rates but is accompanied by an undesirable increase in pressure drop. Computational Fluid Dynamics (CFD) is a common tool used to eva...
متن کاملAdaptive particle image velocimetry based on sharpness metrics
Background: Optical distortions can significantly deteriorate the measurement accuracy in particle image velocimetry systems. Such distortions can occur at fluctuating phase boundaries during flow measurement and result from the accompanied refractive index changes. The usage of a wavefront sensor can be hindered by disturbing light reflexes or scattering. Methods: A combination of sharpness me...
متن کاملHeat Transfer Enhancement of a Flat Plate Boundary Layer Distributed by a Square Cylinder: Particle Image Velocimetry and Temperature-Sensitive Paint Measurements and Proper Orthogonal Decomposition Analysis
The current empirical study was conducted to investigate the wall neighborhood impact on the two-dimensional flow structure and heat transfer enhancement behind a square cylinder. The low- velocity open-circle wind tunnel was used to carry out the study tests considering the cylinder diameter (D)-based Reynolds number (ReD) of 5130. The selected items to compare were different gap he...
متن کامل